
 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

Rover Technology: Enabling Scalable Location-

Aware Computing
CHINTAPATLA DINESH*, ** P. KARTHIKEYAN MCA., M.E

*P.G. Scholar (M.C.A), Siddharth Institute of Engineering and Technology, Puttur-517583.

** Department Of MCA

Abstract:

Rover stands for Remotely Operated Video Enhanced

Receiver. Rover is next generation of Bluetooth, infrared

& cellular services. Rover technology can be ranging from

power full laptop to simple cellular phones. The

technology which enables the scalable location aware

computing. This involves automation availability of

information & services based on current location of user.

This user make avail location aware computing through

his PDA.PDA is a hand held computer used as palmtop

computer. PDA’s commonly have colour screen & audio

capabilities to be used as mobile phone, web browsers.

Many PDA’s can access the internet, intranet & extranet

via Wi-Fi. Many PDA’s employ touch screen technology.

Keywords: Spacecraft Autonomy, Planetary Robotics,

Technology Infusion

1 Introduction

Rover stands for Remotely Operated Video Enhanced

Receiver. Rover is next generation of Bluetooth, infrared &

cellular services. Rover technology can be ranging from

power full laptop to simple cellular phones. The technology

which enables the scalable location aware computing. This

involves automation availability of information & services

based on current location of user. This user make avail

location aware computing through his PDA.PDA is a hand

held computer used as palmtop computer. PDA’s commonly

have colour screen & audio capabilities to be used as mobile

phone, web browsers. Many PDA’s can access the internet,

intranet & extranet via Wi-Fi. Many PDA’s employ touch

screen technology.

 1.2. Necessity

 • Location-aware, in addition to the more traditional notions

of time-aware, user-aware, and device-aware. Rover has a

location service that can track the location of every user, either

by automated location determination technology (for example,

using signal strength or time difference) or by the user

manually entering current location (for example, by clicking

on a map). • Available via a variety of wireless access
technologies (IEEE 802.11 wireless LANs, Bluetooth,

Infrared, cellular services, etc.) and devices (laptop, PDA,

cellular phone, etc.), and allows roaming between the different

wireless and device types. Rover dynamically chooses

between different wireless links and tailors application-level

information based on the device and link layer technology. •
Scales to a very large client population, for example,

thousands of users. Rover achieves this through fine-

resolution application-specific scheduling of resources at the

servers and the network.

 1.3. Objective

 We believe that Rover Technology will greatly enhance the

user experience in a large number places, including visits to

museums, amusement and theme parks, shopping malls, game

fields, offices and business centers. The system has been

designed specifically to scale to large user populations.

Therefore, we expect the benefits of this system to be higher

in such large user population environments.

 1.4. Theme

 We will use a museum tour application as an example to

illustrate different aspects of Rover. We consider a group of

users touring the museums in Washington D.C. At a Rover

registration point in a museum, each user is issued a handheld

device with audio and video capabilities, say an off-the-shelf

PDA available in the market today. Alternatively, if a user

possesses a personal device, he can register this device and

thus gain access to Rover. The devices are trackable by the

Rover system. So as a user moves through the museum,

information on relevant artifacts on display are made available

to the user’s device in various convenient forms, for example,

audio or video clips streamed to the device. Users can query

the devices for building maps and optimal routes to objects of

their interest. They can also reserve and purchase tickets for

exhibitions and shows in the museum later in the day. The

group leader can coordinate group activities by sending

relevant group messages to the users. Once deployed, the

system can be easily expanded to include many other different

services to the users.

1.4.1. Rover services.

a. Basic data services. Rover enables a basicset of data

services in different media formats, including text, graphics,

audio, and video. Users can subscribe to specific data

components dynamically through the device user interface.

Depending on the capabilities of the user’s device, only a

select subset of media formats may be available to the user.

This data service primarily involves one-way interaction;

depending on user subscriptions, appropriate data is served by

the Rover system to the client devices.

 b. Transactional services. These services have commit

semantics that require coordination of state between the clients

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

and the Rover servers. A typical example is e-commerce

interactions. Services that require location manipulation are a

particularly important class of data services in Rover.

Location is an important attribute of all objects in Rover. The

technique used to estimate the location of an object (some

techniques are described in the Appendix) significantly affects

the granularity and accuracy of the location information.

Therefore an object’s location is identified by a tuple of

Value, Error, and Timestamp. The error identifies the

uncertainty in the measurement (value). The timestamp

identifies when the measurement was completed. The

accuracy of the location information is relevant to the context

of its use. For example, an accuracy of meters is adequate to

provide walking directions from the user’s current location to

another location about 500 meters away. However, this same

accuracy is inadequate to identify the exhibit in front of the

user. User input in these cases, helps significantly improve the

accuracy of user location information.

c. Map-based services. Map-based services are an important

component of location manipulation services. Rover maps

can be subject to various operations before being displayed to

users:

 Filter: Objects in a Rover map have a set of

attributes that identify certain properties of the

objects. Depending on the user’s context (which

indicates the user’s interests), filters are generated for

the attribute values of interest to the user. These

filters are applied to maps to select the appropriate

subset of objects to display to the user. For example,

one user may be interested in only the restaurants in a

specific area, while another user needs to view only

the museum and exhibition locations. The filters can

be dynamically changed to appropriately change the

objects being displayed on the map.

 Zoom: The zoom level of a displayed map identifies

its granularity. The zoom level at a client device is

chosen based on the user’s context. For example, a

user inside a museum gets a detailed museum map,

but when the user steps outside the museum, he gets

an area map of all the museums and other points of

interest in the geographic vicinity. The zoom level

can be implemented as an attribute of objects, and

appropriate filters can then be applied to display a

map at the desired zoom level.

Figure 1: Physical architecture of the Rover

System

• Translate: This functionality enables the map service to
automatically update the view of the displayed map on the

client device as the user moves through the system. When the

location of the user moves out of the central region of the

currently displayed map, the system prepares a new map

display that is appropriately translated from the previously

displayed map

2. Rover Architecture

2.1. Architecture

A Rover system, depicted in Figure 1, consists of the following

entities:

2.1.1 End-users:of the system.End-users of the system Rover

maintains a user profile for each enduser, that defines specific

interests of the user and is used to customize the content served.

2.1.2 Rover-clients

Rover-clients are the client devices through which users interact with

Rover. They are typically small wireless handheld units with great

diversity of capabilities in regard to processing, memory and storage,

graphics and display, and network interface. Rover maintains a

device profile for each device, identifying its capabilities and thus,

the functionality available at that device.

2.1.3 Wireless access infrastructure.

Wireless access infrastructure provides wireless connectivity

to the Rover clients. Possible wireless access technologies

include IEEE 802.11 based wireless LANs, Bluetooth and

Cellular services. For certain QoS guarantees, additional

mechanisms need to be implemented at the access points of

these technologies for controlled access to the wireless

interface.

Servers implement and manage the various services provided

to the end-users. The servers consist of the following: The

server system consists of the following set of devices:

 Rover controller: is the “brain” of the Rover

system. It provides and manages the different

services requested by the Rover clients. It schedules

and filters the content sent to the clients based on

user and device profiles and their current locations.

 Location server: is a dedicated unit responsible

for managing the client device location services

within the Rover system. Alternatively, an externally

available location service can also be used.

 Media streaming unit: provides the streaming

of audio and video content to the clients. In fact, it is

possible to use many of the off-the-shelf

streamingmedia units that are available today and

integrate them in the Rover system.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

 Rover database: stores all content delivered to

the Rover clients. It also serves as the stable store for

the state of the users and clients that is maintained by

the Rover controller.

 Logger: interacts with all the Rover server devices

and receives log messages from their instrumentation

modules. There are two potential bottlenecks that

can hinder the scalability of such a system to large

user populations. One is the server system because it

needs to handle a very large number of client

requests with tight real-time constraints. Another

potential bottleneck is the bandwidth and latency of

the wireless access points. For a server to handle

such a large volume of realtime requests, in addition

to adequate compute power and appropriate data

structures, it must have finegrained real-time

application-specific scheduling of tasks to efficiently

manage the available resources, both processing and

bandwidth. This leads us to divide server devices

into two classes’ primary servers, which directly

communicate with the clients, and secondary servers,

which do not directly communicate with clients but

interact with primary servers to provide back end

capabilities to the system. The Rover controller,

location server and media streaming unit are

examples of primary servers, while the Rover

database and the logger are examples of secondary

servers. In order to meet the performance objectives,

only the primary servers need to implement the fine-

grained real-time task scheduling mechanism. We

have defined a concurrent software architecture

called the Action model that provides such a

scheduling mechanism, and implemented the Rover

controller accordingly.

 The Action model, explained below, avoids the

overheads of thread context switches and allows a

more efficient scheduling of execution tasks. The

Rover system exports a set of well defined interfaces

through which it interacts with theheterogeneous

world of users and devices with their widely varying

requirements and capabilities. Thus new and

different client applications can be developed by

third-party developers to interact with the Rover

system. A Rover system represents a single domain

of administrative control that is managed and

moderated by its Rover controller. A large domain

can be partitioned into multiple administrative

domains each with its own Rover system, much like

the existing Domain Name System . For this multi-

Rover system, we define protocols that allow

interaction between the domains. This enables users

registered in one domain to roam into other domains

and still receive services from the system.

2.2. Action model

In order to achieve fine-grained real-time applicationspecific

scheduling, the Rover controller is built according to

concurrent software architecture we call the action model. In

this model, scheduling is done in “atomic” units called

actions. An action is a “small” piece of code that does not

have any intervening I/O operations. Once an action begins

execution, it cannot be pre-empted by another action.

Consequently, given a specific server platform, it is easy to

accurately bind the execution time of an action. The actions

are executed in a controlled manner by an Action Controller.

We use the term server operation to refer to a transaction,

either client- or administrator-initiated, that interacts with the

Rover controller; examples in the museum scenario would be

register Device, get Route and locate User. A server operation

consists of a sequence (or more precisely, a partial order) of

actions interleaved by asynchronous I/O events. Each server

operation has exactly one “response handling” action for

handling all I/O event responses for the operation; i.e., the

action is eligible to execute whenever an I/O response is

received. A server operation at any given time has zero or

more actions eligible to be executed. A server operation is in

one of the following three states:

 Ready-to-run: At least one action of the server

operation is eligible to be executed but no action of

the server operation is executing.

 Running: One action of the server operation is

executing (in a multi-processor setup, several

actions of the operation can be executing

simultaneously).

 Blocked: The server operation is waiting for some

asynchronous I/O response and no actions are

eligible to be executed. The Action Controller uses

administrator-defined policies to decide the order of

execution of the set of eligible actions. The

scheduling policy can be a simple static one, such as

priorities assigned to server operations, but it can

equally well be time based, such as earliest-

deadline-first or involving real-time cost functions.

In any case, the controller picks an eligible action

and executes it to completion, and then repeats,

waiting only if there are no eligible actions

(presumably all server operations are waiting for

I/O completions). The management and execution

of actions are done through a simple Action API

defined as follows: • In it (action id, function ptr):
This routine is called to initialize a new action

(identified by action id) for a server operation.

Function ptr identifies the function (or piece of

code) to be executed when the action runs.

 Run (action id, function parameters, deadline,

deadline failed handler ptr): This routine is called to

mark the action as eligible to run. Function

parameters are the parameters used in executing this

instance of the action. Deadline is optional and

indicates the time (relative to the current time) by

which the action should be executed. This is a soft

deadline, that is, its violation leads to some penalty

but not system failure. If the action controller is

unable to execute the action within the deadline, it

will execute the function indicated by deadline

failed handler ptr. This parameter can be NULL,

indicating that no compensatory steps are needed.

 Cancel (action id, cancel handler ptr): This routine

is called to cancel a ready-to-run action provided it

is not executing. Cancel handler ptr indicates a

cleanup function. It can be NULL.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

2.2.1. Actions vs. Threads.

Our need to scale to very large client populations made us

adopt the action model rather than the more traditional thread

model. We now provide some experimental justification.

There are several ways to use a thread model to implement

the Rover controller. One is to implement each server

operation as a separate thread. Another is to have a separate

thread for each user. Both of these imply a large number of

simultaneously active threads as we scale to large user

populations, resulting in large overheads for thread switching.

A more sensible approach is to create a small set of

“operator” threads that execute all operations, for example,

one thread for all register Device operations, one for all locate

User operations, and so on. Here the thread switching

overhead is modest but there are drawbacks. One is that,

depending on the threads package, it restricts our ability to

optimize thread scheduling, especially as we transit to

timebased (rather than priority based) scheduling. More

importantly, because each operator thread executes its set of

operations in sequence, this approach severely limits our

ability to optimally schedule the eligible actions within an

operation and across operations. Of course, each thread could

keep track of all its eligible actions and do scheduling at the

action level, but this is essentially recreating the the action

model within each thread.

Figure 3.1: Scenario A has 10,000 processor-bound server

operations where computation is interleaved with file

write operations

Figure 3.2: Scenario B has 100 I/O bound server

operations where computation is interleaved with network

I/O interactions

Scenario A:

This is a computation-intensive scenario and has 10,000

processor-bound server operations, where each of the

server operations has three compute blocks, interleaved

with two file write operations (see Figure 2). In each of

these server operations, the second and the third I/O

compute block does not need to wait for the prior file

I/O write operation to complete.

 Scenario B:

 This is an I/O-intensive scenario andhas 100 I/O-bound

server operations, where each of the server operations

has three compute blocks, interleaved with two network

I/O operations (see Figure 3). In each of these server

operations, the second and third compute blocks can be

initiated only after the completion of the prior network

I/O operation. The network I/O interaction was

implemented using UDP. Since our focus is on the

comparison of the action-based versus the threadbased

systems, we avoided issues of packet loss and re-

transmissions by only considering those experiments

where no UDP packets were lost in the network. We

consider two execution platforms, referred to as M1 and

M2 in the paper. M1 comprises of a Intel Pentium III

(600 MHz) processor and 96 MB of RAM which runs

Linux. M2 comprises of a Sun Ultra 5, with a Sparc

(333 MHz) processor and 128 MB RAM and runs

Solaris. For the thread-based implementation, we used

the Linux Threads library for the M1 platform and the

Pthreads library for the M2 platform, both of which are

implementations of the Posix 1003.1c threads package.

This total execution time for the three compute blocks in

each server operation A was 0.1518 ms for M1 and

0.9069 ms for M2. The ping network latency for the

network I/O in server operation B varied between 30-35

ms. We compared performances of an action-based

implementation and a thread-based implementation of

the two scenarios for the different platforms. In the

action-based implementation each compute block is

implemented as a separate action. In the threadbased

implementation, we experimented with a different

number of threads, where each thread executed an equal

number of server operations for perfect load balancing

between the different threads.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 5

Table1: (in ms) Comparisons of overheads for action

based and thread-based systems In Table 1, we present

the overheads obtained in each case, where the overhead

is the total execution time minus the fixed, identical and

unavoidable computation/communication costs for the

two scenarios. We report the mean execution overheads

of a large number of runs, which were required to obtain

low variance. For the computation-intensive server

operations there are very little performance gains in

trying to overlap computation with communication (file

I/O), and is not substantial enough to justify the

overheads of a multi-threaded implementation.

Therefore, a thread-based system

with a single thread achieves the best performance

among the thread-based implementations. For the I/O

intensive server operations, using a multithreaded

implementation is useful, since computation and

communication can be overlapped. Consequently, the

best performance for the threadbased system is

achieved, when the maximum number of threads is used

(one thread for each server operation). As can be

observed in both scenarios, the actionbased

implementation still achieves significantly (about an

order of magnitude) less overhead as compared to the

best thread-based implementation.

 2.3. Rover Clients

The client devices in Rover are handheld units of

varying form factors, ranging from powerful laptops to

simple cellular phones. They are categorized by the

Rover controller based on attributes identified in the

device profiles, such as display properties screen size

and color capabilities, text and graphics capabilities,

processing capabilities ability to handle vector

representations and image compression, audio and video

delivery capabilities and user interfaces. The Rover

controller uses these attributes to provide responses to

clients in the most compatible formats. For the wireless

interface of client devices, we have currently considered

two link layer technologies EEE 802.11 Wireless LAN

and Bluetooth. Bluetooth is power efficient and is

therefore better at conserving client battery power.

According to current standards, it can provide

bandwidths of up to 2 Mbps. In contrast, IEEE 802.11

wireless is less power-efficient but is widely deployed

and can currently provide bandwidths of up to 11 Mbps.

In areas where these high bandwidth alternatives are not

available, Rover client devices will use the lower

bandwidth air interfaces provided by cellular wireless

technologies that use CDMA or TDMA based

techniques. In particular, cellular phones can connect as

clients to Rover, which implies that the Rover system

interfaces with cellular service providers.Different air-

interfaces may be present in a single Rover system or in

different domains of a multi-Rover system. In either

case, software radios is an obvious choice to integrate

different air-interface technologies. While the location

management system is not tied to a particular air

interface, certain properties of specific air interfaces can

be leveraged to better provide location management

(discussed in the Appendix).

Figure 3.3: Logical architecture of a Rover system

2.4. Rover Controller

The interaction of the Rover controller with all other

components of the system is presented in Figure 4. The Rover

controller interacts with the external world through the

following interfaces:

 Location Interface: This interface is used by the

Rover controller to query the location service about

the positions of client devices. The location of a

device is defined as a tuple representing the estimate

of its position (either absolute or relative to some

well-known locations), the accuracy of the estimate,

and the time of location measurement. Depending on

the technology being used to gain position estimates,

The accuracy of the estimate depends on the

particulars of the location technology, for example,

GPS [6], IEEE 802.11 signal strength, signal

propagation delays, etc. Rover takes into account

this accuracy information when making location-

based decisions

 Admin Interface: This interface is used by system

administrators to oversee the Rover system,

including monitoring the Rover controller, querying

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 6

client devices, updating security policies, issuing

system specific commands, and so on.

 Content Interface: This interface is used by the

content provider to update the content that is served

by the Rover controller to the client devices. Having

a separate content interface decouples the data from

the control path. • Back-end Interface: This interface

is used for interaction between the Rover controller

and certain external services as may be required.

One such service is e-commerce, by which credit

card authorization for various purchases can be

made. These services would typically be provided by

thirdparty vendors.

 Server Assistants Interface: This interface is used for

interaction of the Rover controller with the

secondary servers. e.g. the database and the

streaming media unit.

 Transport Interface: This is the communication

interface between the Rover controller and the

clients, which identify data formats and interaction

protocols between them.

2.5. Rover Database

The database in Rover consists of two components, which

together decouple client-level information from the content

that is served. One component of the database is the user

InfoBase, which maintains user and device information of all

active users and devices in the system. It contains all client-

specific contexts of the users and devices, namely profiles and

preferences, client location, and triggers set by the clients.

This information changes at a fairly regular rate due to client

activities, e.g. the client location alters with movements. The

Rover controller has the most updated copy of this

information and periodically commits this information to the

database. For many of these data items (e.g. client location),

the Rover controller lazily updates the database. These are

termed as volatile data since any change to these data items

are not guaranteed to be accurately reflected by the system

across system crashes. For some others, (e.g. new client

registration) the Rover controller commits this information to

the database before completing the operation. These are

termed as non-volatile data. The Rover controller identifies

some parts of the data to be volatile, so as to avoid very

frequent database transactions. The Rover controller does not

guarantee perfect accuracy of the volatile data, and thus trades

off accuracy with efficiency for these data components. The

other component in the database is the content info base. This

stores the content that is served by the Rover controller and

changes less frequently. The content provider of the Rover

system is responsible for keeping this InfoBase updated. In the

museum example, this component stores all text and graphical

information about the various artifacts on display. The Rover

database implements an extended-SQL interface that is

accessed by the Rover controller. Apart from the usual SQL

functionality, it also provides an API for retrieval of spatial

information of different objects and clients in the system. The

transactions of the Rover controller with the database are

executed on behalf of the different server operations. The

transactions, by definition, are executed atomically by the

database. Additionally, each transaction is identified by two

different flags that identify certain properties for execution, as

follows: Lock-Acquiring: If this flag is set, the transaction is

required to acquire relevant locks, on behalf of the server

operation, to read or write data to the database. It also requires

that these locks will be released by the server operation prior

to its termination at the Rover controller. Blocking: If a

transaction issued by a server operation is unable to access or

modify some data due to locks being held by other server

operations, it can either block till it successfully reads the data,

or it.returns immediately to the server operation without

successfully execution. If the Blocking flag is set for a

transaction, then the first option is chosen for the transaction.

To avoid deadlocks, server operations acquire the relevant

locks on data items stored in the database using a Two Phase

Locking protocol with a lexicographic ordering of lock

acquiring for data items. It is important to note that server

operations may need to acquire locks at the data base; if and

only if they need to access the stored data through multiple

transactions and all these transactions need to have the same

data view. This is not required for the vast majority of server

operations that either make a single database transaction, or do

not need its multiple transactions to have identical views.

None of the server operations in the current implementation of

Rover required acquiring locks at the database. The

transactions themselves might acquire and release locks at the

database during their execution, which are not visible to the

server operations at the Rover controller.

2.6. Multi-Rover System

A single Rover system comprises of a single Rover controller,

other server devices (e.g., Rover database and Rover

streaming media unit), and a set of Rover clients. A single

system is sufficient for management of Rover-clients in a zone

of single administrative control. For example, consider a

Rover system in a single museum. All artifacts and objects on

display in the museum are managed by a single administrative

entity. There is a single content provider for this system and a

single Rover system is appropriate to serve all visitors to this

museum. However, each separate museum has its

independent administrative authority. Therefore, we can have

a separate Rover system for each of the different museums

that are administered separately by each museum authority.

This allows a decentralized administration of the independent

Rover systems, locally by each museum authority. However,

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 7

it is important to provide a seamless experience to visitors as

they roam from museum to museum. A multiRover system is

a collection of independent Rover systems that peer with each

other to provide this seamless connectivity to the user

population. The design of a multi-Rover system is similar in

spirit to the Mobile IP [10] solution to provide network layer

mobility to devices. Each client device has a home Rover

system to which it is registered. As the device physically

moves into the zone of a different or foreign Rover system, it

needs to authenticate itself with the Rover controller of the

foreign system. Based on administrative policies, the two

Rover systems have service level agreements that define the

services that they will provide to clients of each other. When

the Rover controller of a system detects a foreign client

device, it first checks whether it has an appropriate service-

level agreement with the Rover controller of the device’s

home system. If one exists, the Rover controller of the foreign

system requests transfer of relevant state about the client

device from the Rover controller of the home system and

subsequently provides necessary services to it. Rover

controllers of different Rover system use the InterController

protocols to interact. 2.7. Initial Implementation We have

successfully built Rover prototype systems and tested them in

the campus of University of Maryland College Park. The

implementation has been demonstrated for both indoor and

outdoor environments. A preliminary test implementation was

developed on Windows based systems (Windows 2000 for the

controller and Windows CE for the client devices). The

current implementation of the Rover system has been

developed under the Linux operating system. The Rover

controller is implemented on a Intel Pentium machine running

RedHat Linux 7.1 and the clients are implemented on Compaq

iPAQ Pocket PC (model H3650) running the Familiar

distribution (release versions 0.4 and 0.5) of Linux for PDAs1.

Wireless access is provided using IEEE 802.11 wireless

LANs. Each Compaq iPAQ is equipped with a wireless card

which is attached to the device through an expansion sleeve.

We have experimented with a set of 8 client devices and have

tested various functionalities of the system

Figure 3.4: View of the display of a Rover-client.

For our outdoor experiments, we interfaced a GPSdevice

(Garmin e-Trex) to the Compaq iPAQs and obtained device

location accuracy of between 3-4 meters. The display of the

iPAQ Rover-client displays the locations of the different

users (represented by the dots) on the area map as shown in

Figure 5. The indoor Rover system is implemented for the

4th floor of the A.V. Williams Building.

Computer Science Department is located), whose map is

shown in Figure 6. In this implementation, the location

service is being provided using signal strength measurements

from different base stations. There are about 12 base stations

that are distributed all over the building and typically the

client device can receive beacons from five or six of the base

stations. We are able to get an accuracy of better than a meter

in this environment, using very simple signalstrength based

estimation techniques. In both these cases, we implemented

the basic functionality of the Rover system. They include:

 User activation/de-activation and device

registration/de-registration procedures.

 Periodic broadcast of events of interest from the

Rover controller to the users in specific locations.

Interaction between users. This can be either

simple text messaging or voice chat. Users can

optionally make their location visible to other

users. In the museum example, a tour group

coordinator can use this feature to locate all the

other members of the group.

 Users can request alerts from the Rover controller

when certain conditions are met. The conditions

may be time, location or context dependent. This

can be used to provide notification to ticket

holders of an approaching show time. Clearly, for

the users who are further away from the show

venue, this notification needs to be provided early

enough, so that they have enough time to reach the

venue.

 An administrator’s console allows a global view of

all users and their locations in the system. The

administrator can directly interact with all or a

specific subset of the users based on the location

or other attributes of the users.

3. Conclusions

 3.1. Conclusions and Future Work

Rover is currently available as a deployable system using

specific technologies, both indoors and outdoors. Our final

goal is to provide a completely integrated system that

operates under different technologies, and allows a seamless

experience of location-aware computing to clients as they

move through the system. With this in mind, we have a set of

different projects in both the short and the long term.

Figure 4.1: The indoor Rover system is currently

implemented

in the 4th floor of the A.V. Williams Building at the

University of Maryland. Rover is currently available as a

deployable system using specific technologies, both indoors

and outdoors. Our final goal is to provide a completely

integrated system that operates under different technologies,

and allows a seamless experience of location-aware

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering (IJSREM)

 Volume: 04 Issue: 03 | Mar -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 8

computing to clients as they move through the system. With

this in mind, we have a set of different projects in both the

short and the long term.

 Experiment with a wider range of client devices,

especially the ones with limited capabilities. They

include devices with low-resolution graphics,

limited color choices, or only a few lines of text

display area.

 For the more-capable devices, we are

experimenting with location-aware streaming video

services.

 Integrate different other wireless air interfaces to

the Rover system. Bluetooth-based LAN is

emerging as an important standard today, and it is a

logical next technology to experiment with. In the

longer term, we are expecting to interact with

cellular providers to define and implement

mechanisms that will allow Rover clients to

interact over the cellular interface.

 Implement the other different location services.

We are currently building custom hardware that

will allow the deployment of the Pinpoint

Technology (see Appendix) for device location.

We are also experimenting with other mechanisms

for better location estimation.

 Implement the multi-Rover system.

 Campus-wide deployment of Rover. In the near

term, we are hoping to deploy a Rover system in

the cam-pus of the University of Maryland, College

Park. Initially, independent Rover systems will be

deployed to serve clients of specific departments.

Beyond that these systems will be able to interact

using the interRover Controller protocols of a

multi-Rover system. The Rover controllers will be

co-located with the web servers, and the content

management will be handled jointly for both the

systems in an integratedmanner.

 We believe that Rover Technology will greatly

enhance the user experience in a large number

places, including visits to museums, amusement

and theme parks, shopping malls, game fields,

offices and business centers. The system has been

designed specifically to scale to large user

populations. Therefore, we expect the benefits of

this system to be higher in such large user

population environments.

 3.2. applications
 In museum

 They can also use the devices to reserve and

purchase tickets to museum events later in the day

 Software radio technology3 offers a way to

integrate the different interfaces into a single

device. This would allow the device to easily roam

between various Rover systems, each with different

wireless access technologies.

 Many of today's off-the-shelf streamingmedia units

can be integrated with the rover system

 References

[1] http://www.bluetooth.com.

 [2] http://www.irda.org.

 [3] J. Agre, D. Akenyemi, L. Ji, R. Masuoka, and P. Thakkar.

A Layered Architecture for LocationbasedServices in Wireless

Ad Hoc Networks. In Proceedings of IEEE Aerospace

Conference, March 2002.

 [4] P. Bahl and V.N. Padmanabhan. RADAR: An in-building

RF-based user location and tracking system. In Proceedings of

Infocom, Tel Aviv, Israel, March 2000.

[5] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat. Using

and Determining Location in a ContextSensitive Tour Guide.

IEEE Computer, 34(8), August 2000.

[6] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins.

GPS: Theory and Practice. SpringerVerlag,Wein, NY, 1997.

[7] IEEE. Wireless LAN medium access control (MAC) and

physical layer (PHY) specification, Standard 802.11,1999.

 [8] J. Mitola. The Software Radio Architecture. IEEE

Communications Magazine, 5, May 1995.

 [9] P. Mockapetris. Domain names - implementation and

specification, RFC 1035, November 1987.

 [10] C.E. Perkins. IP mobility support, RFC 2002, October

1996.

 [11] A.J. Viterbi. CDMA: Principles of Spread Spectrum

Communications. Addison-Wesley, 1995.

http://www.ijsrem.com/
http://www.bluetooth.com/
http://www.irda.org/

