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Abstract: 

Rover stands for Remotely Operated Video Enhanced 

Receiver. Rover is next generation of Bluetooth, infrared 

& cellular services. Rover technology can be ranging from 

power full laptop to simple cellular phones. The 

technology which enables the scalable location aware 

computing. This involves automation availability of 

information & services based on current location of user. 

This user make avail location aware computing through 

his PDA.PDA is a hand held computer used as palmtop 

computer. PDA’s commonly have colour screen & audio 

capabilities to be used as mobile phone, web browsers. 

Many PDA’s can access the internet, intranet & extranet 

via Wi-Fi. Many PDA’s employ touch screen technology. 
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1 Introduction 

Rover stands for Remotely Operated Video Enhanced 

Receiver. Rover is next generation of Bluetooth, infrared & 

cellular services. Rover technology can be ranging from 

power full laptop to simple cellular phones. The technology 

which enables the scalable location aware computing. This 

involves automation availability of information & services 

based on current location of user. This user make avail 

location aware computing through his PDA.PDA is a hand 

held computer used as palmtop computer. PDA’s commonly 

have colour screen & audio capabilities to be used as mobile 

phone, web browsers. Many PDA’s can access the internet, 

intranet & extranet via Wi-Fi. Many PDA’s employ touch 

screen technology.  

 1.2. Necessity  

 • Location-aware, in addition to the more traditional notions 

of time-aware, user-aware, and device-aware. Rover has a 

location service that can track the location of every user, either 

by automated location determination technology (for example, 

using signal strength or time difference) or by the user 

manually entering current location (for example, by clicking 

on a map). • Available via a variety of wireless access 
technologies (IEEE 802.11 wireless LANs, Bluetooth, 

Infrared, cellular services, etc.) and devices (laptop, PDA, 

cellular phone, etc.), and allows roaming between the different 

wireless and device types. Rover dynamically chooses 

between different wireless links and tailors application-level 

information based on the device and link layer technology.  • 
Scales to a very large client population, for example,  

 

 

thousands of users. Rover achieves this through fine-

resolution application-specific  scheduling of resources at the 

servers and the network.   

 1.3. Objective 

 We believe that Rover Technology will greatly enhance the 

user experience in a large number places, including visits to 

museums, amusement and theme parks, shopping malls, game 

fields, offices and business centers. The system has been 

designed specifically to scale to large user populations. 

Therefore, we expect the benefits of this system to be higher 

in such large user population environments.  

 1.4. Theme  

 We will use a museum tour application as an example to 

illustrate different aspects of Rover. We consider a group of 

users touring the museums in Washington D.C. At a Rover 

registration point in a museum, each user is issued a handheld 

device with audio and video capabilities, say an off-the-shelf 

PDA available in the market today. Alternatively, if a user 

possesses a personal device, he can register this device and 

thus gain access to Rover. The devices are trackable by the 

Rover system. So as a user moves through the museum, 

information on relevant artifacts on display are made available 

to the user’s device in various convenient forms, for example, 

audio or video clips streamed to the device. Users can query 

the devices for building maps and optimal routes to objects of 

their interest. They can also reserve and purchase tickets for 

exhibitions and shows in the museum later in the day. The 

group leader can coordinate group activities by sending 

relevant group messages to the users. Once deployed, the 

system can be easily expanded to include many other different 

services to the users. 

1.4.1. Rover services.  

a. Basic data services. Rover enables a basicset of data 

services in different media formats, including text, graphics, 

audio, and video.  Users can subscribe to specific data 

components dynamically through the device user interface. 

Depending on the capabilities of the user’s device, only a 

select subset of media formats may be available to the user. 

This data service primarily involves one-way interaction; 

depending on user subscriptions, appropriate data is served by 

the Rover system to the client devices.  

 b. Transactional services. These services have commit 

semantics that require coordination of state between the clients 
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and the Rover servers. A typical example is e-commerce 

interactions. Services that require location manipulation are a 

particularly important class of data services in Rover. 

Location is an important attribute of all objects in Rover. The 

technique used to estimate the location of an object (some 

techniques are described in the Appendix) significantly affects 

the granularity and accuracy of the location information. 

Therefore an object’s location is identified by a tuple of 

Value, Error, and Timestamp. The error identifies the 

uncertainty in the measurement (value). The timestamp 

identifies when the measurement was completed.  The 

accuracy of the location information is relevant to the context 

of its use.  For example, an accuracy of   meters is adequate to 

provide walking directions from the user’s current location to 

another location about 500 meters away. However, this same 

accuracy is inadequate to identify the exhibit in front of the 

user. User input in these cases, helps significantly improve the 

accuracy of user location information.   

c. Map-based services. Map-based services are an important 

component of location manipulation services.  Rover maps 

can be subject to various operations before being displayed to 

users:   

 Filter: Objects in a Rover map have a set of 

attributes that identify certain properties of the 

objects. Depending on the user’s context (which 

indicates the user’s interests), filters are generated for 

the attribute values of interest to the user. These 

filters are applied to maps to select the appropriate 

subset of objects to display to the user. For example, 

one user may be interested in only the restaurants in a 

specific area, while another user needs to view only 

the museum and exhibition locations. The filters can 

be dynamically changed to appropriately change the 

objects being displayed on the map.  

  Zoom: The zoom level of a displayed map identifies 

its granularity. The zoom level at a client device is 

chosen based on the user’s context. For example, a 

user inside a museum gets a detailed museum map, 

but when the user steps outside the museum, he gets 

an area map of all the museums and other points of 

interest in the geographic vicinity. The zoom level 

can be implemented as an attribute of objects, and 

appropriate filters can then be applied to display a 

map at the desired zoom level. 

 

Figure 1: Physical architecture of the Rover 

System 

• Translate: This functionality enables the map service to 
automatically update the view of the displayed map on the 

client device as the user moves through the system. When the 

location of the user moves out of the central region of the 

currently displayed map, the system prepares a new map 

display that is appropriately translated from the previously 

displayed map  

2. Rover Architecture 

2.1. Architecture  

A Rover system, depicted in Figure 1, consists of the following 

entities:   

2.1.1 End-users:of the system.End-users of the system Rover 

maintains a user profile for each enduser, that defines specific 

interests of the user and is used to customize the content served.   

 

2.1.2 Rover-clients 

Rover-clients are the client devices through which users interact with 

Rover. They are typically small wireless handheld units with great 

diversity of capabilities in regard to processing, memory and storage, 

graphics and display, and network interface. Rover maintains a 

device profile for each device, identifying its capabilities and thus, 

the functionality available at that device.   

2.1.3 Wireless access infrastructure. 

Wireless access infrastructure provides wireless connectivity 

to the Rover clients. Possible wireless access technologies 

include IEEE 802.11 based wireless LANs, Bluetooth and 

Cellular services. For certain QoS guarantees, additional 

mechanisms need to be implemented at the access points of 

these technologies for controlled access to the wireless 

interface. 

Servers implement and manage the various services provided 

to the end-users. The servers consist of the following:  The 

server system consists of the following set of devices:   

 Rover controller: is the “brain” of the Rover 

system. It provides and manages the different 

services requested by the Rover clients. It schedules 

and filters the content sent to the clients based on 

user and device profiles and their current locations.  

 Location server: is a dedicated unit responsible 

for managing the client device location services 

within the Rover system. Alternatively, an externally 

available location service  can also be used. 

 Media streaming unit: provides the streaming 

of audio and video content to the clients. In fact, it is 

possible to use many of the off-the-shelf 

streamingmedia units that are available today and 

integrate them in the Rover system.  
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 Rover database: stores all content delivered to 

the Rover clients. It also serves as the stable store for 

the state of the users and clients that is maintained by 

the Rover controller. 

 Logger: interacts with all the Rover server devices 

and receives log messages from their instrumentation 

modules.  There are two potential bottlenecks that 

can hinder the scalability of such a system to large 

user populations. One is the server system because it 

needs to handle a very large number of client 

requests with tight real-time constraints. Another 

potential bottleneck is the bandwidth and latency of 

the wireless access points.  For a server to handle 

such a large volume of realtime requests, in addition 

to adequate compute power and appropriate data 

structures, it must have finegrained real-time 

application-specific scheduling of tasks to efficiently 

manage the available resources, both processing and 

bandwidth. This leads us to divide server devices 

into two classes’ primary servers, which directly 

communicate with the clients, and secondary servers, 

which do not directly communicate with clients but 

interact with primary servers to provide back end 

capabilities to the system. The Rover controller, 

location server and media streaming unit are 

examples of primary servers, while the Rover 

database and the logger are examples of secondary 

servers.  In order to meet the performance objectives, 

only the primary servers need to implement the fine-

grained real-time task scheduling mechanism.  We 

have defined a concurrent software architecture 

called the Action model that provides such a 

scheduling mechanism, and implemented the Rover 

controller accordingly.   

 The Action model, explained below, avoids the 

overheads of thread context switches and allows a 

more efficient scheduling of execution tasks.  The 

Rover system exports a set of well defined interfaces 

through which it interacts with theheterogeneous 

world of users and devices with their widely varying 

requirements and capabilities.  Thus new and 

different client applications can be developed by 

third-party developers to interact with the Rover 

system.  A Rover system represents a single domain 

of administrative control that is managed and 

moderated by its Rover controller. A large domain 

can be partitioned into multiple administrative 

domains each with its own Rover system, much like 

the existing Domain Name System . For this multi-

Rover system, we define protocols that allow 

interaction between the domains. This enables users 

registered in one domain to roam into other domains 

and still receive services from the system.  

2.2. Action model  

In order to achieve fine-grained real-time applicationspecific 

scheduling, the Rover controller is built according to 

concurrent software architecture we call the action model. In 

this model, scheduling is done in “atomic” units called 

actions. An action is a “small” piece of code that does not 

have any intervening I/O operations. Once an action begins 

execution, it cannot be pre-empted by another action. 

Consequently, given a specific server platform, it is easy to 

accurately bind the execution time of an action. The actions 

are executed in a controlled manner by an Action Controller.  

We use the term server operation to refer to a transaction, 

either client- or administrator-initiated, that interacts with the 

Rover controller; examples in the museum scenario would be 

register Device, get Route and locate User. A server operation 

consists of a sequence (or more precisely, a partial order) of 

actions interleaved by asynchronous I/O events. Each server 

operation has exactly one “response handling” action for 

handling all I/O event responses for the operation; i.e., the 

action is eligible to execute whenever an I/O response is 

received.  A server operation at any given time has zero or 

more actions eligible to be executed. A server operation is in 

one of the following three states:  

 Ready-to-run: At least one action of the server 

operation is eligible to be executed but no action of 

the server operation is executing. 

 Running: One action of the server operation is 

executing (in a multi-processor setup, several 

actions of the operation can be executing 

simultaneously).  

 Blocked: The server operation is waiting for some 

asynchronous I/O response and no actions are 

eligible to be executed.  The Action Controller uses 

administrator-defined policies to decide the order of 

execution of the set of eligible actions. The 

scheduling policy can be a simple static one, such as 

priorities assigned to server operations, but it can 

equally well be time based, such as earliest-

deadline-first or involving real-time cost functions. 

In any case, the controller picks an eligible action 

and executes it to completion, and then repeats, 

waiting only if there are no eligible actions 

(presumably all server operations are waiting for 

I/O completions).  The management and execution 

of actions are done through a simple Action API 

defined as follows:  • In it (action id, function ptr): 
This routine is called to initialize a new action 

(identified by action id) for a server operation. 

Function ptr identifies the function (or piece of 

code) to be executed when the action runs. 

 Run (action id, function parameters, deadline, 

deadline failed handler ptr): This routine is called to 

mark the action as eligible to run. Function 

parameters are the parameters used in executing this 

instance of the action. Deadline is optional and 

indicates the time (relative to the current time) by 

which the action should be executed. This is a soft 

deadline, that is, its violation leads to some penalty 

but not system failure. If the action controller is 

unable to execute the action within the deadline, it 

will execute the function indicated by deadline 

failed handler ptr. This parameter can be NULL, 

indicating that no compensatory  steps are needed.  

 Cancel (action id, cancel handler ptr): This routine 

is called to cancel a ready-to-run action provided it 

is not executing. Cancel handler ptr indicates a 

cleanup function. It can be NULL.   
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2.2.1. Actions vs. Threads.  

Our need to scale to very large client populations made us 

adopt the action model rather than the more traditional thread 

model. We now provide some experimental justification. 

There are several ways to use a thread model to implement 

the Rover controller. One is to implement each server 

operation as a separate thread. Another is to have a separate 

thread for each user. Both of these imply a large number of 

simultaneously active threads as we scale to large user 

populations, resulting in large overheads for thread switching. 

A more sensible approach is to create a small set of 

“operator” threads that execute all operations, for example, 

one thread for all register Device operations, one for all locate 

User operations, and so on. Here the thread switching 

overhead is modest but there are drawbacks. One is that, 

depending on the threads package, it restricts our ability to 

optimize thread scheduling, especially as we transit to 

timebased (rather than priority based) scheduling.  More 

importantly, because each operator thread executes its set of 

operations in sequence, this approach severely limits our 

ability to optimally schedule the eligible actions within an 

operation and across operations. Of course, each thread could 

keep track of all its eligible actions and do scheduling at the 

action level, but this is essentially recreating the the action 

model within each thread. 

 

Figure 3.1: Scenario A has 10,000 processor-bound server  

operations  where  computation  is  interleaved with file 

write operations  

 

 

Figure 3.2:  Scenario B has 100 I/O bound server 

operations where computation is interleaved with network 

I/O interactions   

Scenario A:  

This is a computation-intensive scenario and has 10,000 

processor-bound server operations, where each of the 

server operations has three compute blocks, interleaved 

with two file write operations (see Figure 2). In each of 

these server operations, the second and the third I/O 

compute block does not need to wait for the prior file 

I/O write operation to complete.  

 Scenario B: 

 This is an I/O-intensive scenario andhas 100 I/O-bound 

server operations, where each of the server operations 

has three compute blocks, interleaved with two network 

I/O operations (see Figure 3). In each of these server 

operations, the second and third compute blocks can be 

initiated only after the completion of the prior network 

I/O operation. The network I/O interaction was 

implemented using UDP. Since our focus is on the 

comparison of the action-based versus the threadbased 

systems, we avoided issues of packet loss and re-

transmissions by only considering those experiments 

where no UDP packets were lost in the network.  We 

consider two execution platforms, referred to as M1 and 

M2 in the paper. M1 comprises of a Intel Pentium III 

(600 MHz) processor and 96 MB of RAM which runs 

Linux. M2 comprises of a Sun Ultra 5, with a Sparc 

(333 MHz) processor and 128 MB RAM and runs 

Solaris. For the thread-based implementation, we used 

the Linux Threads library for the M1 platform and the 

Pthreads library for the M2 platform, both of which are 

implementations of the Posix 1003.1c threads package. 

This total execution time for the three compute blocks in 

each server operation A was 0.1518 ms for M1 and 

0.9069 ms for M2. The ping network latency for the 

network I/O in server operation B varied between 30-35 

ms.  We compared performances of an action-based 

implementation and a thread-based implementation of 

the two scenarios for the different platforms.  In the 

action-based implementation each compute block is 

implemented as a separate action. In the threadbased 

implementation, we experimented with a different 

number of threads, where each thread executed an equal 

number of server operations for perfect load balancing 

between the different threads.   
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Table1: (in ms) Comparisons of overheads for action 

based and thread-based systems In Table 1, we present 

the overheads obtained in each case, where the overhead 

is the total execution time minus the fixed, identical and 

unavoidable computation/communication costs for the 

two scenarios. We report the mean execution overheads 

of a large number of runs, which were required to obtain 

low variance. For the computation-intensive server 

operations there are very little performance gains in 

trying to overlap computation with communication (file 

I/O), and is not substantial enough to justify the 

overheads of a multi-threaded implementation. 

Therefore, a thread-based system  

with a single thread achieves the best performance 

among the thread-based implementations.  For the I/O 

intensive server operations, using a multithreaded 

implementation is useful, since computation and 

communication can be overlapped. Consequently, the 

best performance for the threadbased system is 

achieved, when the maximum number of threads is used 

(one thread for each server operation).  As can be 

observed in both scenarios, the actionbased 

implementation still achieves significantly (about an 

order of magnitude) less overhead as compared to the 

best thread-based implementation.  

 2.3. Rover Clients 

The client devices in Rover are handheld units of 

varying form factors, ranging from powerful laptops to 

simple cellular phones. They are categorized by the 

Rover controller based on attributes identified in the 

device profiles, such as display properties screen size 

and color capabilities, text and graphics capabilities, 

processing capabilities ability to handle vector 

representations and image compression, audio and video 

delivery capabilities and user interfaces. The Rover 

controller uses these attributes to provide responses to 

clients in the most compatible formats. For the wireless 

interface of client devices, we have currently considered 

two link layer technologies EEE 802.11 Wireless LAN 

and Bluetooth. Bluetooth is power efficient and is 

therefore better at conserving client battery power. 

According to current standards, it can provide 

bandwidths of up to 2 Mbps. In contrast, IEEE 802.11 

wireless is less power-efficient but is widely deployed 

and can currently provide bandwidths of up to 11 Mbps. 

In areas where these high bandwidth alternatives are not 

available, Rover client devices will use the lower 

bandwidth air interfaces provided by cellular wireless 

technologies that use CDMA or TDMA based 

techniques.  In particular, cellular phones can connect as 

clients to Rover, which implies that the Rover system 

interfaces with cellular service providers.Different air-

interfaces may be present in a single Rover system or in 

different domains of a multi-Rover system. In either 

case, software radios  is an obvious choice to integrate 

different air-interface technologies. While the location 

management system is not tied to a particular air 

interface, certain properties of specific air interfaces can 

be leveraged to better provide location management 

(discussed in the Appendix). 

 

Figure 3.3: Logical architecture of a Rover system 

2.4. Rover Controller 

The interaction of the Rover controller with all other 

components of the system is presented in Figure 4. The Rover 

controller interacts with the external world through the 

following interfaces:   

 Location Interface: This interface is used by the 

Rover controller to query the location service about 

the positions of client devices. The location of a 

device is defined as a tuple representing the estimate 

of its position (either absolute or relative to some 

well-known locations), the accuracy of the estimate, 

and the time of location measurement. Depending on 

the technology being used to gain position estimates, 

The accuracy of the estimate depends on the 

particulars of the location technology, for example, 

GPS [6], IEEE 802.11 signal strength, signal 

propagation delays, etc. Rover takes into account 

this accuracy information when making location-

based decisions 

 Admin Interface: This interface is used by system 

administrators to oversee the Rover system, 

including monitoring the Rover controller, querying 
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client devices, updating security policies, issuing 

system specific commands, and so on.  

 Content Interface: This interface is used by the 

content provider to update the content that is served 

by the Rover controller to the client devices. Having 

a separate content interface decouples the data from 

the control path.  • Back-end Interface: This interface 

is used for interaction between the Rover controller 

and certain external services as may be required. 

One such service is e-commerce, by which credit 

card authorization for various purchases can be 

made. These services would typically be provided by 

thirdparty vendors. 

 Server Assistants Interface: This interface is used for 

interaction of the Rover controller with the 

secondary servers. e.g. the database and the 

streaming media unit.  

  Transport Interface: This is the communication 

interface between the Rover controller and the 

clients, which identify data formats and interaction 

protocols between them.   

2.5. Rover Database  

The database in Rover consists of two components, which 

together decouple client-level information from the content 

that is served.  One component of the database is the user 

InfoBase, which maintains user and device information of all 

active users and devices in the system. It contains all client-

specific contexts of the users and devices, namely profiles and 

preferences, client location, and triggers set by the clients. 

This information changes at a fairly regular rate due to client 

activities, e.g. the client location alters with movements. The 

Rover controller has the most updated copy of this 

information and periodically commits this information to the 

database. For many of these data items (e.g. client location), 

the Rover controller lazily updates the database. These are 

termed as volatile data since any change to these data items 

are not guaranteed to be accurately reflected by the system 

across system crashes. For some others, (e.g. new client 

registration) the Rover controller commits this information to 

the database before completing the operation. These are 

termed as non-volatile data. The Rover controller identifies 

some parts of the data to be volatile, so as to avoid very 

frequent database transactions. The Rover controller does not 

guarantee perfect accuracy of the volatile data, and thus trades 

off accuracy with efficiency for these data components.  The 

other component in the database is the content info base. This 

stores the content that is served by the Rover controller and 

changes less frequently. The content provider of the Rover 

system is responsible for keeping this InfoBase updated. In the 

museum example, this component stores all text and graphical 

information about the various artifacts on display.  The Rover 

database implements an extended-SQL interface that is 

accessed by the Rover controller. Apart from the usual SQL 

functionality, it also provides an API for retrieval of spatial 

information of different objects and clients in the system.  The 

transactions of the Rover controller with the database are 

executed on behalf of the different server operations. The 

transactions, by definition, are executed atomically by the 

database. Additionally, each transaction is identified by two 

different flags that identify certain properties for execution, as 

follows:  Lock-Acquiring: If this flag is set, the transaction is 

required to acquire relevant locks, on behalf of the server 

operation, to read or write data to the database. It also requires 

that these locks will be released by the server operation prior 

to its termination at the Rover controller.  Blocking: If a 

transaction issued by a server operation is unable to access or 

modify some data due to locks being held by other server 

operations, it can either block till it successfully reads the data, 

or it.returns immediately to the server operation without 

successfully execution. If the Blocking flag is set for a 

transaction, then the first option is chosen for the transaction.  

To avoid deadlocks, server operations acquire the relevant 

locks on data items stored in the database using a Two Phase 

Locking protocol with a lexicographic ordering of lock 

acquiring for data items. It is important to note that server 

operations may need to acquire locks at the data base; if and 

only if they need to access the stored data through multiple 

transactions and all these transactions need to have the same 

data view. This is not required for the vast majority of server 

operations that either make a single database transaction, or do 

not need its multiple transactions to have identical views. 

None of the server operations in the current implementation of 

Rover required acquiring locks at the database. The 

transactions themselves might acquire and release locks at the 

database during their execution, which are not visible to the 

server operations at the Rover controller.  

 

2.6. Multi-Rover System  

A single Rover system comprises of a single Rover controller, 

other server devices (e.g., Rover database and Rover 

streaming media unit), and a set of Rover clients. A single 

system is sufficient for management of Rover-clients in a zone 

of single administrative control. For example, consider a 

Rover system in a single museum. All artifacts and objects on 

display in the museum are managed by a single administrative 

entity. There is a single content provider for this system and a 

single Rover system is appropriate to serve all visitors to this 

museum.  However, each separate museum has its 

independent administrative authority. Therefore, we can have 

a separate Rover system for each of the different museums 

that are administered separately by each museum authority. 

This allows a decentralized administration of the independent 

Rover systems, locally by each museum authority.  However, 
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it is important to provide a seamless experience to visitors as 

they roam from museum to museum. A multiRover system is 

a collection of independent Rover systems that peer with each 

other to provide this seamless connectivity to the user 

population.  The design of a multi-Rover system is similar in 

spirit to the Mobile IP [10] solution to provide network layer 

mobility to devices. Each client device has a home Rover 

system to which it is registered. As the device physically 

moves into the zone of a different or foreign Rover system, it 

needs to authenticate itself with the Rover controller of the 

foreign system. Based on administrative policies, the two 

Rover systems have service level agreements that define the 

services that they will provide to clients of each other.  When 

the Rover controller of a system detects a foreign client 

device, it first checks whether it has an appropriate service-

level agreement with the Rover controller of the device’s 

home system. If one exists, the Rover controller of the foreign 

system requests transfer of relevant state about the client 

device from the Rover controller of the home system and 

subsequently provides necessary services to it. Rover 

controllers of different Rover system use the InterController 

protocols to interact.  2.7. Initial Implementation We have 

successfully built Rover prototype systems and tested them in 

the campus of University of Maryland College Park. The 

implementation has been demonstrated for both indoor and 

outdoor environments. A preliminary test implementation was 

developed on Windows based systems (Windows 2000 for the 

controller and Windows CE for the client devices). The 

current implementation of the Rover system has been 

developed under the Linux operating system. The Rover 

controller is implemented on a Intel Pentium machine running 

RedHat Linux 7.1 and the clients are implemented on Compaq 

iPAQ Pocket PC (model H3650) running the Familiar 

distribution (release versions 0.4 and 0.5) of Linux for PDAs1. 

Wireless access is provided using IEEE 802.11 wireless 

LANs. Each Compaq iPAQ is equipped with a wireless card 

which is attached to the device through an expansion sleeve.  

We have experimented with a set of 8 client devices and have 

tested various functionalities of the system 

 

Figure 3.4: View of the display of a Rover-client. 

For our outdoor experiments, we interfaced a GPSdevice 

(Garmin e-Trex) to the Compaq iPAQs and obtained device 

location accuracy of between 3-4 meters. The display of the 

iPAQ Rover-client displays the locations of the different 

users (represented by the dots) on the area map as shown in 

Figure 5.  The indoor Rover system is implemented for the 

4th floor of the A.V. Williams Building. 

Computer Science Department is located), whose map is 

shown in Figure 6. In this implementation, the location 

service is being provided using signal strength measurements 

from different base stations. There are about 12 base stations 

that are distributed all over the building and typically the 

client device can receive beacons from five or six of the base 

stations. We are able to get an accuracy of better than a meter 

in this environment, using very simple signalstrength based 

estimation techniques.  In both these cases, we implemented 

the basic functionality of the Rover system. They include: 

 User activation/de-activation and device 

registration/de-registration procedures. 

 Periodic broadcast of events of interest from the 

Rover controller to the users in specific locations.  

Interaction between users. This can be either 

simple text messaging or voice chat. Users can 

optionally make their location visible to other 

users. In the museum example, a tour group 

coordinator can use this feature to locate all the 

other members of the group.  

 Users can request alerts from the Rover controller 

when certain conditions are met. The conditions 

may be time, location or context dependent. This 

can be used to provide notification to ticket 

holders of an approaching show time. Clearly, for 

the users who are further away from the show 

venue, this notification needs to be provided early 

enough, so that they have enough time to reach the 

venue. 

 An administrator’s console allows a global view of 

all users and their locations in the system. The 

administrator can directly interact with all or a 

specific subset of the users based on the location 

or other attributes of the users.   

3. Conclusions 

 3.1. Conclusions and Future Work 

Rover is currently available as a deployable system using 

specific technologies, both indoors and outdoors. Our final 

goal is to provide a completely integrated system that 

operates under different technologies, and allows a seamless 

experience of location-aware computing to clients as they 

move through the system. With this in mind, we have a set of 

different projects in both the short and the long term.  

 

 

Figure 4.1: The indoor Rover system is currently 

implemented 

in the 4th floor of the A.V. Williams Building at the 

University of Maryland. Rover is currently available as a 

deployable system using specific technologies, both indoors 

and outdoors. Our final goal is to provide a completely 

integrated system that operates under different technologies, 

and allows a seamless experience of location-aware 
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computing to clients as they move through the system. With 

this in mind, we have a set of different projects in both the 

short and the long term. 

 Experiment with a wider range of client devices, 

especially the ones with limited capabilities. They 

include devices with low-resolution graphics, 

limited color choices, or only a few lines of text 

display area.  

 For the more-capable devices, we are 

experimenting with location-aware streaming video 

services. 

 

 Integrate different other wireless air interfaces to 

the Rover system. Bluetooth-based LAN is 

emerging as an important standard today, and it is a 

logical next technology to experiment with. In the 

longer term, we are expecting to interact with 

cellular providers to define and implement 

mechanisms that will allow Rover clients to 

interact over the cellular interface.  

 Implement the other different location services.  

We are currently building custom hardware that 

will allow the deployment of the Pinpoint 

Technology (see Appendix) for device location. 

We are also experimenting with other mechanisms 

for better location estimation. 

 Implement the multi-Rover system.   

 Campus-wide deployment of Rover. In the near 

term, we are hoping to deploy a Rover system in 

the cam-pus of the University of Maryland, College 

Park. Initially, independent Rover systems will be 

deployed to serve clients of specific departments. 

Beyond that these systems will be able to interact 

using the interRover Controller protocols of a 

multi-Rover system. The Rover controllers will be 

co-located with the web servers, and the content 

management will be handled jointly for both the 

systems in an integratedmanner.   

 We believe that Rover Technology will greatly 

enhance the user experience in a large number 

places, including visits to museums, amusement 

and theme parks, shopping malls, game fields, 

offices and business centers. The system has been 

designed specifically to scale to large user 

populations. Therefore, we expect the benefits of 

this system to be higher in such large user 

population environments. 

  3.2. applications  
 In museum   

 They can also use the devices to reserve and 

purchase tickets to museum events later in the day 

 Software radio technology3 offers a way to 

integrate the different interfaces into a single 

device. This would allow the device to easily roam 

between various Rover systems, each with different 

wireless access technologies.  

 Many of today's off-the-shelf streamingmedia units 

can be integrated with the rover system 
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